Pattern Matching

Portions © Copyright 2000 - 2002, Phil Rogers

LT L8 o 1 o] o OSSO PR UP PSR 1
(D7 T T] USRS 2

F N o1 g g 1o g [=] 1 (o 1 o] o SO U ORI URRTR 4

AT A1 o [or=T o 1Y =N (e 1< USRS 5
LAY AT o (o= o 03 Y/ 1 = S PSS 5

e o] o Tor el 1T o | @ o T=T = L o] g KT PR URT 6
Wildcard MatChing EXAQMPIES:..........uee ittt ee e e e e se e st e e snre e e neeennreeeneeennees 7
Regular EXPreSSioN IMATCNEIS.........coiiiiie ettt ettt et e b e s nbe e e be e e nbeeenreeenseeenes 11
Regular EXPreSSION SYNTAX.......cccuiiiueiiieeiieesieeesteeesieseseesseesseesseessseessseessseessssessseessssssssesssesessssessessssees 11

L ETo oy TN = Vo 1 T SRS 12
1210] o o] o S 12

Regexp RePIaCEMENT OPS.....cocuiiiiieiii ettt ettt st st see e s st e e sbe e e nbeeebeeenreeenes 12

T 0 Lo T ot T]] =S 13
Example of Move MatChing - REOEXP.uuiiiiiiieiiieeiie et siee et sree et see e be s s e e sneee e 14
Example of Rename MatChing - REGEXP.....ccoiuiiiiiiiieiie et e e e e e nneeas 15

REQGEXID TOST CABISES.eeeiteieeitee et ee et e ettt e ettt e ettt e e st e e e asbe e e sate e e e abe e e esee e e asee e e amse e e saseeeanneeesnneeeanneeannes 16

S0 Lo R = o =SSR 19

[1ETod] o £ o] o PSR RT 19

RegEXS REPIACEMENT OPS.....coiiiieiiieciie ettt se e e e st e et e e sse e e saeeesseeesseeessaeeansaesnseeansennnes 19
Example of Move MatChing - REOEXS.......uui it s 20
Example of Rename MatChing - REJEXS.......ccciiiiiiiriiieesieeesieeesieeeseeeseeesseeesteeesseeesnsaeesneeeennees 20

REGEXS TEST CABSES.eeiiiieieeiiiiie et e ettt e ettt e et e e e tee e e e abe e e e abe e e e ease e e e see e e aanee e e anee e e enseeeeanneeeannreeeanneaeennns 20

AV F= U0t O g T=Tot 1 1D T = oo RS 22
Credits AnNd RETEIEINCES.ciiiieiiie ettt ettt be et e e s st e e bt e ebe e e sbeesaeeebeeambeesaeeebeesnseesneeenes 24

FIiNal ComMMENTS & CONTACE INT0. .ottt e ee eeeeeeeeeennnns 25

Pattern Matching

Portions © Copyright 2000 - 2002, Phil Rogers

Introduction

During the Spring and Summer of 1996 | was working on a project (a still unreleased text editor) which
needed better search facilities than the simple literal search engine which | had devised for it. While
there are many good search engines with freely available source code on the internet, the vast majority of
these are written for use in a Unix environment using Unix memory management, command line interface
and so forth and are not the ideal thing to use as is on the Mac. Over the course of those 5-6 months, | set
out to port as many of these as | could to the Mac so that | could run comparative performance testing on
all of them and choose the appropriate ones for my use.

At the same time | devised a series of memory management schemes for interchangeable use by each of
these search engines where needed including an alloca like scheme which tracked memory allocation and
ensured that no memory leaks occured (memory blocks that get allocated but end up forgotten in the
confusion and do not get released from use). These memory management schemes allow each of these
search engines to use the standard Mac relocatable memory allocation calls which help to prevent
memory fragmentation unlike the Unix malloc call (which still remains an option). Surprisingly, this
also resulted in slightly slower performance, although its ability to better coexist with the Mac system
probably more than offsets this loss.

By the time the dust settled, | ended up with 18 different search engines working on the Mac including my
literal search engine and wildcard engine, 4 BMG search engines (FAST), at least 8 regular expression
engines, an approximation engine and a few other odd and end search engines. In the time that has passed, |
no longer remember the exact origin and characteristics of each of the search engines although | hope to
be able to piece it back together in time. This document is intended to bring together as much of this
information which | can find into one place with the intent of bringing some kind of order to this state of
chaos and to provide user documentation for these search engines. It will be an ongoing work with
additional info added over time as needed.

Most of the source code for these search engines exists in the public domain for free use. However some of
the regular expression matchers are from the GNU packages distributed by the Free Software Foundation.
Due to an unusual licensing policy of the FSF, these particular engines could not be released to the public
(even as freeware executables) unless | were to also release to the public domain ALL of my own
supporting source code which is used in association with the modified FSF libraries. This source code
represents my own blood and toil over the past two decades and | am not about to just give it away - no
developer would do so other than those whose work is done exclusively for others. While | do not
necessarily agree fully with the FSF license, | will abide by it and will limit the search engines used in
my released software to those not covered by the FSF license. In the end, it is you the user who ends up on
the short end of the stick because there have been several very useful programs or program features
which | have wanted to release as freeware but which | have been unable to do because of this restriction.

A wide variety of pattern matchers is described here, each having its own unique capabilities and
characteristics. For the novice user, the wildcard matcher is probably simpler to understand than the
regular expression matchers and should be the first to be looked at. It does not provide the total
versatility and control that is offered by regular expressions but comes close enough that it will allow
you to perform most, if not all of the same tasks for which you might otherwise use regular expressions.

Definitions

Expression

Subexpression

Literal

Character

String

Token

An expression is an operation or a quantity stated in symbolic form. It may
use symbols to represent numbers or abstract concepts for use in operations
similar to arithmetic. An expression can also be thought of as any legal
combination of symbols that represents a value. What is legal and illegal
depends on the particular application and context of the expression. For
example, x+5 is an expression, as also is the character string "Donkeys."

Expressions are used in programming languages, database systems, and
spreadsheet applications. For example, in database systems, you use
expressions to specify which information you want to see. These types of
expressions are called queries.

Every expression consists of at least one operand and can have one or more
operators. Operands are values, whereas operators are symbols that
represent particular actions. In the expression

Xx+5 x and 5 are operands, and + is an operator.

Expressions are often classified by the type of value that they represent. For
example:

Boolean expressions : Evaluate to either TRUE or FALSE

integer expressions: Evaluate to whole numbers, like 3 or 100
Floating-point expressions: Evaluate to real numbers, like -3.141
String expressions: Evaluate to character strings

In our case we will be dealing exclusively with string expressions. These
expressions consist of any combination of literals (the string equivalent of
values) and string operators. For example we might encounter the wildcard
expression of:

*dog? where * and ? are wildcard operators and “dog” is a literal

As used in this document, a subexpression is defined to be any part of an
expression which is in itself also a separate expression.

A literal is a string which is treated as the text which it contains without any
special interpretation of its contents as operators or special characters of
any kind.

A single alphanumeric character. A single character is commonly expressed
as the character surrounded by single quotes, for example: ‘s’.

A string is simply a series of zero or more alphanumeric characters which
is treated as an entity or combined object. A string is commonly expressed as
the string text surrounded by double quotes, for example: “catfish”.

Something serving as an indication or an expression of something else. As
used in this document, each individual element of an expression is considered
to be a token. This includes all wildcard operators, all regular expression
operators and all literals. Each literal string in such expressions is treated
as a single token. This is my own term for lack of a better word.

Wildcard Expression

Regular Expression

Search Engine

Matcher

BMG Search Engine

Input Text

Find Pattern

Repl Pattern

Repl Text

Find Engine

Repl Engine

3

A wildcard expression as used in this document is a Find Pattern
consisting of any combination of literal strings and wildcard tokens as defined
in the wildcard syntax table shown below.

A regular expression is a Find Pattern consisting of any combination of
literal strings and regular expression operators as defined in the Regular
Expression Syntax table shown below.

A program function which examines a block of text (a text document for
instance) looking for matches to a specific string (the Find Pattern) which
the user is trying to find within that block of text. The simplest (and most
crude) method of doing this is to examine each character in sequence to see if
it matches the first character in the Find Pattern. If it matches, then the
entire pattern is compared to the succeding characters in the block of text. If
not, then the next character is examined until the end of the document is
reached. The Find Pattern may be a simple literal string as in most cases or it
may be a regular expression or other complex pattern, from which comes the
generalized term “pattern matching”.

A matcher is simply that portion of a search engine which compares the Find
Pattern with the input text, taking into account the desired nature of the Find
Pattern. As used by MacNetTools, the term matcher has a secondary meaning.
Since MNT’s use of search engines is primarily concerned with comparing
file names with a user provided pattern ratehr than locating that pattern in a
block of text, the matcher is considered to be a separate program function
which combines the search engines to make the text comparison with an
additional check to determine if the compared text spans the entire length of
the filename. See “all or none restriction” below.

Boyer-Moore-Gosper search engine - an extremely fast literal search engine
which achieves its speed by preprocessing the find string into a table which
allows multiple simultaneous comparisons. The BMG engine does not look at
each character of the input text sequentially but jumps by n characters after
each comparison where n is the length of the find string. Its inherent
simplicity also leads to further speed increases.

The text being examined (which in all cases as used by MNT is filename text).

Pattern to be matched against the Input Text. This pattern may be any
combination of plain text (literals) and tokens listed above. See examples
below.

Pattern to be used as a replacement pattern in the context of the Input Text
and the Find Pattern. This pattern may be any combination of plain text
(literals) and tokens listed above. See examples below.

The replacement text built from the Input Text based on the comparison of the
Find Pattern and the Repl Pattern.

The function(s) involved in matching the Find Pattern to the Input Text. Also
referred to as the matcher. The Find Engine can always match any of the above
tokens (assuming of course that the corresponding text exists in the Input
Text) and is totally independent of the Repl Engine.

The function(s) involved in generating the Repl Text from the Input Text
based on the contents of the Repl Pattern. In MNT, text replacement
operations are used only with the File Tools Rename command.

All or none restriction

All of the matchers as used by MacNetTools impose an all or none restriction - the entire input text
string must be matched by the pattern provided or else it is considered to be a bad match. While the
underlying search engines will easily find a specified pattern anywhere within the input string, our
purpose here is in matching filename text with a specific pattern, looking for a go/no go result as a
condition for determining another action (moving a file for example). For this reason the matchers all
impose this restriction. We can find subpatterns within the input text by adding * tokens to each end of
the Find Pattern so that this pattern will match the entire input string. This use of the * tokens applies to
the wildcard matcher only; the specific tokens used for this purpose are different with the other
matchers.

Wildcard Matcher

The wildcard pattern matching syntax is really nothing more than a greatly expanded form of the same
syntax as used by MS-DOS for its wildcard matching of filenames and creation of replacement names. The
matching tokens available and their meanings are described below. Note that with so many tokens to deal
with, it becomes somewhat difficult to remember them all. For this reason, wherever there are edittext
boxes for entry of such patterns, a set of either 8 or 10 buttons is also provided to facilitate entry of the
desired tokens wherever the insertion point is located.

Wildcard Syntax

Button Token

One ?
Any *
Num ¢
Let »
Pun 8
Wht D
Wst «
Dec .
ExXN +
ExL »
Literal N/A

Hex KeyBrd Meaning

3F ? Match any one character

2A * Match any string of zero or more characters

A2 Option-4 Match any one digit character

C5 Option-X Match any one letter character

A4 Option-6 Match any one punctuation character

Cc6 Option-J Match any one white character (space, tab, return)

Cc7 Option-\ Match any string of zero or more white characters

2E . Match any decimal character

Bl Opt-Shft-= Match and extract any one digit in this character
position if it exists

Cc8 Opt-Shft-\ Match and extract any one letter in this character
position if it exists

N/A N/A Match actual text entered - any text other than the

above tokens is considered to be a literal.

EditText Boxes and Checkboxes where applicable

Find Patn
Repl Patn

Case Sensitive

Use MetaChars

Wild White

Wild Decimal

Sync Find/Repl

Lit Wild Repl

Box for user entry of Find Pattern.
Box for user entry of Repl Pattern.

If checked, the pattern matching will be performed in a case sensitive
manner.

If checked, certain control characters will be input as a two character pair
with a preceding caret ‘v’ indicating that it is a metacharacter pair. This
feature of my text engine is not implemented in MNT because all Input Text is
filename text and no filenames contain those characters which are supported
as metacharacters (primarily return, line feed and tab).

If checked, then white characters will be treated as wild characters (a rather
obscure option).

If checked, then the decimal point character will be treated as a wild
character. This is another obscure but slightly more useful option that was
created to allow the pattern matching to more closely resemble that found in
MS-DOS where matches pivoted around the decimal point separating the
filename from the extension.

No longer applicable, needed or wanted in this version.

If checked, the Repl Pattern will be treated as a literal and will be directly
substituted for the matched text with no replacement text being generated.

Replacement Operations

In version 1.2.1 the Wildcard Replacement Engine has been rewritten to be much simpler and less
confusing while offering greatly enhanced capabilities. Gone now are the “Sync Find/Repl” option and the
25 replacement rules. The new Wildcard Replacement Engine has an interface very similar to that used
by those regular expression matchers which have replacement provisions (see sections below).
Basically, each token of the Find pattern is matched to a specific span of characters in the Input Text and
that span of characters is assigned an index represented by the letters a-z which is used to represent it.
These indices are assigned in order from a-z based on the position of the corresponding token in the Find
Pattern and thus also the characters which they represent in the Input Text. They are not case sensitive
and you may also use the letters A-Z or any combination of upper and lower case. The replacement method
works exactly like that of the Regexp matcher except that letters are used rather than numbers allowing
up to 26 tokens to be represented rather than only 9 as in Regexp. We will call these letter designations
the replacement tokens in the description that follows. The Replacement Pattern may consist of any
combination of escaped (preceded by the backslash char ‘\’) replacement tokens and/or literals in any
order and the replacement engine will reassemble the text represented by those tokens in the order
specified. There is room for a great amount of variability here, limited only by your imagination. Words
and even individual letters within words can be reversed or rearranged in any order or even omitted
from the replacement output. Here are a few examples which should show how it works better than can be
described using words.

Wildcard Matching Examples:

T = Text being searched

F = Find Pattern

R = Replace Pattern

S = Replacement or Substitution Text generated by program
A = Array index letters

The first few examples will be fully broken down to show how this scheme works. Try following along
using MNT’s match check dialog while plugging in the T, F and R values as appropriate and it should help
you to understand how each of these examples work.

T "The lazy dog slept”

F "*lazy*"

R "\acrazy\c"

S " The crazy dog slept "

T ITIhlel 1Mlalzlyl Idlolgl Isltlelplel T L 0L D LD LD LT LTI
F I > Il azyl * |

A 1 a | b1 c |

The text is then reassembled according to the replacement pattern of:
\a + “crazy” + \c or

“The *“ + “crazy” + “ dog slept”
to give
“The crazy dog slept”

Now lets take a look at another example that looks more like a file hame, although unusual (which is
where this will all be used anyhow). Note that the D token in the Find Pattern below below matches

any white character - we could also have used a space character in those same token positions. This

is simple example of word reversal.

T ""dog eat cat.jpg"

F "*D*D*.jpg"

R "“\e\b\c\d\a\f"

S ""cat eat dog-jpg"

T Idlolgl lelalt] Jclaltl-lglpelgl L T L DD L LD LD LD LT T T
F I = Ibl > Ibl * 1.3 p gl

A I a |b] c |dl e | LI

The text i1s reassembled as:

\e + \b + \c + \d + \a + \f or

“Cat“ + 13 7 + “eat" + 13 7 + LLd0911 + -jpg
to give

“cat eat dog-jpg”

8

We can change this same example slightly by addition of a literal to totally alter the meaning of the
result. We will also use those space characters mentioned above rather than the D token as described to
show the alternate ways of matching text with various patterns.

T ""dog eat cat.jpg"

F LR ST *-jpg"

R "\e\bloves\d\a\f"

S "cat loves dog-jpg”

T Idlolgl lelalt] lclaltl-lilelgl T 1T 10D DD LD DD DL LTI
F =11 = 11 = 1-13pdgl
A I a Ibl ¢ |d] e | L

The text is reassembled as:
\e + \b + “loves” + \d + \a + \T or
ucatu + [T 1) + ulovesn + [T 1) + udogn + “-jpg"

to give
“cat loves dog-jpg”

9

Here are some other examples of possible find and replace combinations. Please lets have no comments
regarding my totally unusual fabrication of nonexistent words in some of these test cases which | came up
with 8 years ago. | happened to spot an earwig on the floor on the day when these were written so the
words frogwig and catwig seemed to somehow make sense at the time. | will try to think of a few new
examples to go along with the old ones when time permits.

"Fox frogwig$ Dog fox"
"fl’Og*§"
""cat\b\c"

nxomTmd

Match Fails

The above attempt will return a failed match. See the paragraph above named ‘All or none restriction” to
find out why. We can change this example slightly by adding * tokens to each end of the Find Pattern so
that we get the type of match desired:

"Fox frogwig$ Dog fox"
"*frog*g§*"
"cat\c\d"
"catwig$”

w T

Note also in above case that DOS wildcard syntax would not be able to match a pattern of "frog*?". The
additional tokens added to MNT’s wildcard syntax enables it to separate the 8§ or punctuation character
from all other characters enabling it to make matches that might not otherwise be possible. The same
applies in many other cases as well.

"Fox frogwig$ Dog fox™
“"*frog*§*"
"catdog\d"
"catdog$"

w2 T

"Fox frogwig$ Dog fox™
“*frog*wig8*"
"cat\d\e"

"catwig$"

nw o Td

The above case was once considered invalid with the old version of the wildcard replacement engine. Note
also how we can now separate parts of words using the * token as a null token which is used to match a
point in the input text string but no actual characters. In this case we are separating frogwig into its frog
and wig components.

"Fox frogwig$ Dog fox™
"*frOg*§*"

"cat\c!”

“catwig!™

n o T

"Fox frogwig$ Dog fox"
n*frog*$*n
"cat\c\d"
"catwig$”

nxomTmd

10

The above examples are relatively complex. Most of your typical usages are likely to be much simpler.
Take for example the task of shortening the filenames of a group of images named as follows. In reality,
the 44 character filenames involved are too long for the Mac OS file system... but not for OS X... but this
is just an example:

Extremely Elegant Elephant Ear Leaves.01l.jpg
Extremely Elegant Elephant Ear Leaves.02.jpg
Extremely Elegant Elephant Ear Leaves.03.jpg
Extremely Elegant Elephant Ear Leaves.04_.jpg etc

"Extremely Elegant Elephant Ear Leaves.O0l.jpg"

"Extremely Elegant Elephant Ear Leaves*" Note the * at the end
"Elephant\b"

"Elephant.01.jpg"

w T

Using these parameters with the Rename Matching command would rename this list of files to:

Elephant.01.jpg
Elephant.02.jpg
Elephant.03.jpg
Elephant.04.jpg

We could also do the same thing with a bit less writing with the following Find/Replace parameters, but
this would also rename files such as the following:

Elephant Circus Show.01l. jpg

"Extremely Elegant Elephant Ear Leaves.Ol.jpg"
“"*Elephant*._*¢¢*"

"\b\d\e\f\g"

"Elephant.01.jpg"

nw o Td

Reqgular Expression Matchers

11

Regular expressions are a pattern matching feature of Unix which allow the construction of extremely
precise and detailed patterns that can be designed to match either very specific portions of text or a very
wide range of possible text patterns. A regular expression (commonly shortened to “regex”
“regexp”) consists of a string of ordinary text characters interspersed with the special characters
which control he behavior of the regular expression. There are several different regex syntaxes available
for use including grep, egrep, awk, emacs and others. Both of the regex matchers used in MNT make use of
the egrep syntax. The table below is commonly used to describe the meanings of these characters. It
applies to all regex described unless noted otherwise. Operator precedence is (highest to lowest) ?, *,
and +, concatenation, and finally |. All other constructs are syntactically identical to normal characters.
For links to more in depth (and complicated) descriptions of regular expressions, see the Credits section.

Regular Expression Syntax

(grep) (egrep) (explanation)
matches any single character except newline
\? ? postfix operator; preceeding item is optional
* * postfix operator; preceeding item 0O or more times
\+ + postfix operator; preceeding item 1 or more times
\] | infix operator; matches either argument
n n matches the empty string at the beginning of a line - has

different meaning when used in a list of characters

or

$ $ matches the empty string at the end of a line

\< \< matches the empty string at the beginning of a word

\> \> matches the empty string at the end of a word

[chars] [chars] match any character in the given class; if the first
character after [is ~, match any character not in the given
class; a range of characters may be specified by <first>-
<last>; for example, \W (below) is equivalent to the class

["A-Za-z0-9]. To include the] character in such a list it
must occur as the first character after the opening [-

\(\) () parentheses are used to override operator precedence

\<1-9> \<1-9> \<n> matches a repeat of the text matched earlier iIn the
regexp by the subexpression inside the nth opening
parenthesis

\ \ any special character may be preceded by a backslash to

match

it literally

The following are for compatibility with GNU Emacs

\b \b matches
\B \B matches
\w \w matches
\W \W matches

the empty string at the edge of a word

the empty string if not at the edge of a word
word-constituent characters (letters & digits)
characters that are not word-constituent

) 12
Regexp Engine

Description

The Regexp engine was written by Dr. Henry Spencer of the University of Toronto. It was designed to be
compatible with the Bell V8 regexp but was independently created and not derived from Bell source code.
It is freely and commonly available in many internet archives under the name of regexp. Regexp is not
particularly sophisticated and lacks many of the advanced configuration features of other regex engines
but it is simple and easy to use while offering reasonably good performance. As such it is the ideal choice
for the novice user who is just learning to use regular expressions. It follows the syntax listed in the
table above exactly. Unlike most other regex engines, regexp includes a substitution feature for
generating replacement text for text which has already been matched. This is where the greatest
difference is likely to be found between various regex engines.

Regexp Replacement Ops

The Regexp replacement syntax is very similar to that used by the wildcard matcher (and for a good
reason too - | patterned the wildcard matcher’s substitution syntax after that of Regexp using letters
instead of numbers and dropping the requirement for parentheses).

With Regexp, parentheses are used in the Find pattern to group portions of the pattern which are later to
be used for substitution. These are given the invisible numbers 1-9 in the order in which they occur. In
the Replacement pattern, the input text matched by these grouped portions of the Find pattern can then be
invoked using an escaped (preceded by backslash) digit from 1-9 or \1, \2, ... \9. With Regexp only
there is also one additional token that can be used in the Repl Patn. This is the ampersand & character
which tells the replacement engine to use the entire matched portion of the input string as the
substitution string which it outputs. You will see this in most of the test cases listed below but otherwise
it will not be of any particular use in MNT. Take the example:

"word reverse"
"([a-z]+)([Ma-z]+) ([a-z]+)"
"\3\2\1"

"reverse word"

»w xomd

In the above example, the subexpression [a-z] tells the matcher to match any letter ranging from ‘a’ to
‘2’ in the input text. Adding the ‘+’ to the end to form [a-z]+ specifies that this range is to be matched
anywhere from 1 to n times. Placing this subexpression in parentheses as ([a-z]+) groups this
operation in terms of operator precedence but more importantly causes the input text matched by this
subexpression to be saved in the first “save slot” for later reference by the substitution generator as
item “\1”. This subexpression matches the word “word” in the input text. The second subexpression
([~a-z]+) is identical to the first except that the range specified is preceded by the ‘' symbol. This
causes the subexpression to match anything except for the characters specified in the range a-z and in
this case it matches the space character between “word’ and “reverse” in the input text. It is also
grouped by parentheses causing the input text matched by this subexpression to be saved in the second
“save slot” for later reference as item “\2”. The third subexpression ([a-z]+) is once again identical to
the first and is also grouped in parentheses causing the input text matched by this subexpression to be
saved in the second “save slot” for later reference as item “\3”. It matches the word “reverse in the
input text. The Repl Patn specifies that the input text is to be reassembled as the text matched by the
third subexpression (\3) followed by the text matched by the second subexpression (\2) followed by the
text matched by the first subexpression (\1). This means that we put it back together as follows:

\1 = “word”
\2 =" (space character)
\3 = “reverse”

\3 + \2 + \1
“reverse” + " + “word” = “reverse word”.

13
It is never necessary to specify a substitution string (or Repl Patn) except with the Rename

Matching command which is the only MNT command which uses it. In most cases you will only be
concerned with providing a Find Patn to match one or many filenames for which you wish to perform the
command specified (Move Matching for example). In those cases where a substitution string is unused, it
is simply ignored.

Regexp Examples

As always, the best way to understand such constructs is to see them in action through use of examples.
Regular expressions can look very complex and intimidating at first, but by looking at each of the
features alone, they can be made simpler. As with the wildcard matcher, try following along using MNT’s
match check dialog while plugging in the T, F and R values as appropriate and it should help you to
understand how each of these examples work.

"abbbbc"
"ab+bc"
ng
"abbbbc"

»mw o TH

First lets take a look at the simple example above. In this case we first encounter the a in the regular
expression of ab+bc. This matches the initial character a in the input string. The b+ which follows
matches 1 or more instances (thats what the + signifies) of the character b. We have 4 of them to be
matched, but at this point the regex engine looks ahead and sees that it must match yet another b in the
token that follows so it only matches 3 of them with the b+. Then the tokens bc match the remaining bc in
the input text so this is a good (and full) match. With a Repl Patn of “&”, all of the matched text gets sent
to the output as "abbbbc".

"abbbxcd"
"ab*xc"
g

n o T

The above case proceeds identically to the previous case except that the * operator causes the first b in
the regular expression to be matched zero or more times (the same expression could also match an input
string of axc as well as abbbxc). We get a partial match since the abbbxc portion of the input string is
matched by the entire expression but my MNT’s rules requiring full matches, this gets treated as a failed
match as far as any action being taken on this item and the substitution output is suppressed.

"abcde"
"(ab]cd)*e"
ll&_\lll
"abcde-cd"

w T

14
In the above case we have the grouped subexpression (ab|cd) which will match either ab OR cd in

the input text. This group is followed by the * operator which causes the entire group to be repeated zero
or more times until it fails to make a match, so the first time around it matches the ab, then the second
time around it mtches the cd. The grouping parentheses also cause the matched text to be sent to the first
“save slot” for later reference by the substitution code as \1. However, you may notice that we have done
this twice. The “save slot” cannot make a decision as to which set of matched text it prefers so it will
always contain the last text matched by that group, or cd in this case. Then finally we match the e by the
last token in the expression. We get a full match and the substitution text gets assembled as follows. The &
represents the entire matched input text which is followed by a literal hyphen ‘-’ and that is followed by
the text in the \1 “save slot” or cd.

& = “abcde”

- = 7 (space character)

\1 = “cd”

& + - + \1

“abcde” + R “cd” = “abcde-cd”.

Example of Move Matching - Regexp

Now lets take a look at an actual real world example in detail as it might be encountered in MNT, first by
the Move Matching and then by the Rename Matching commands. Lets say that we have a series of files
with names similar to the following list and contained within a larger list of files:

catpaw02.gif dogpawO1.jpg tigerpaw003.jpg
catpaw05.gif dogpaw02.jpg tigerpaw004.jpg
catpaw08.gif dogpawO05.jpg tigerpaw007.jpg etc

We wish to move all of these files into a separate folder without all of the other files contained in the
original folder. Obviously we must first set up our Move To folder as described under the Dest Fldr and
Folder Button items in the File Tools section. Next we must devise a regular expression which will match
those files which we wish to move but which will not match any others. On looking at the pattern of the
filenames we see that there is one item which is consistent acros all of the files to be matched. This is the
string “paw” which we may simply include in the regular expression as a literal. We will ignore the T, S
and R lines of our previous TFRS charts used up to now and use just the F line to piecee together the parts
of our regular expression. So far we know that we must match the string “paw” as a literal, thus:

F "paw"

Now we also want to match a variety of letter characters (we will limit ourselves to lowercase letters for
simplicity). Furthermore we do not know a specific number of characters to be matched because it varies
with the filenames. To match this a range of [a-z] would work just fine and since we must match a
variable number of characters greater than zero, the + postfix operator is just what we need giving us
[a-z]+ as the desired subexpression. So now we have the following:

F "[a-z]+paw"
Next we want to match a variable number of digits following the “paw” literal. A subexpression similar
to the above case will also work just fine but one which describes a series of digits rather than letters.
Whis would give us [0-9] and once again since the number of digits varies and is greater than zero, we
can once again use the + operator to give [0-9]+ as our added subexpression to give:

F "[a-z]+paw[0-9]+"

15
Next we must match that ‘.’ character. We could include it as is as a single character subexpression

of *.” but the ‘.” character is itself an operator which just happens to match any character except newline.
This would serve the purpose but would also match filenames such as “catpaw02tgif” which is not
similar to others on our list of desired files. The correct way to do this is to escape the ‘.” character so
that it matches only the ‘.” character. To do this we precede it with the escape operator giving us “\.” as
our added subexpression. So now we have:

F "[a-z]+paw[0-9]+\."

Finally we must match either the gif or jpg extensions which we can do directly with the | operator
giving us a subexpression of (gif|jpg) which will match either the string “gif’ or the string “jpg”. It is
placed in parentheses so that it is treated as a single entity. This is probably not necessary but helps with
the readability. Since this is to be matched only once, there is no need for any postfix operators such as *
or + following it. Adding this to our regular expression gives a final result of:

F "[a-z]+paw[0-9]+\. (gif|jpg)™

Try using this regular expression in MNTs Match Check Dialog with any of the original filenames and you
will get a full match (don’t do as | did and forget to select the Regexp matcher on the matcher popup). If
this regular expression is used with the File Tools Move Matching (and with Regexp selected), the desired
files and no others will be selectively moved to the chosen Move To folder.

Example of Rename Matching - Regexp

Now lets take the same example files which we used above and bulld the expressions which would be
needed in order to rename these files using the Rename Matching command. Since we are talking about
animals in all cases, lets rename the files to animalpawsxx.yyy where xx is the same 2 (or 3) digit
number in each of the filenames and yyy is the extension used in each of the originals. It will not happen
with the filenames chosen, but if for some reason we were to generate identical filenames for two or more
of the renamed files, those following the first file would simply have a suffix of .00, .01 etc appended to
the final filename. First of all let repeat our input names to keep from having to flip pages and also our
original regular expression.

catpaw02.gif dogpawO01.jpg tigerpaw003.jpg

catpaw05.gif dogpaw02.jpg tigerpaw004.jpg

catpaw08.gif dogpaw05.jpg tigerpaw0O07.jpg etc
F "[a-z]+paw[0-9]+\.(gif]|jpg)"”

The only change which we need to make in this case is the addition of one set of parentheses in order to
provide grouping and a save slot assignment. The only thing that will change is the name of the animal
being changed to the literal “animal” and [a-z]+ is the subexpression that matches the animal name. So
we will simply group everything else in order to retain the text matched by the rest of the regular
expression as shown below. Note the extra open parenthesis added before “paw” and the extra close
parenthesis added at the very end of the expression. The save slots are assigned in the order in which the
opening parentheses are encountered in the expression so slot 1 would represent all of the text matched
after the animal name. This is exactly what we need in this case.

F "[a-z]+(paw[0-9]+\. (gif|jpg))™

We will also need a replacement expression in order to instruct the regex substitution code how to
reassemble the output fragments. Since we want to change each animal name to the string “animal” we
will begin with that string as a literal.

R "animal™

16
Now we need to tack on the rest of the text which we have saved in save slot 1 so we simply add the

escaped number 1 or \1 to invoke this saved text as follows:

R "animal\1"

This is all that we need. Repeating our expressions, we can use the following set of Find and Repl
expressions with Rename Matching (and Regexp) to rename all of the files listed (and only those files) to
the name animalpawsxx.yyy which we devised.

F "[a-z]+(paw[0-9]+\. (giflipg))”
R "animal\1"

Regexp Test Cases

The following is a list of test cases used to validate the matcher. These may be used for further examples
to help in learning the various syntactical features of the matcher. Note that in some of the Regexp cases,
a lone hyphen character “-” signifies an empty string and not the hyphen character itself. Some of the
test cases shown below indicate that they will generate a match (match OK = y) but that match will only
be a partial match. This will be indicated by the MNT wildcard match dialog. Although the Regexp engine
has passed this full range of tests under automated conditions, | have not attampted to perform each of
these tests manually in MNT in order to flag those which are only partial matches. Those tests for which
match OK = c are conditional cases used to test various alternative flags in the Regexp engine and should
probably not be used as examples for learning.

Input Text Find Patn Match Repl Patn Substitution Text
(Regular Expr) OK? (Sub String) Generated

T F R S

abc abc Yy & abc

xbc abc n -

axc abc n - -

abx abc n - -

xabcy abc Yy & abc

ababc abc Yy & abc

abc ab*c Yy & abc

abc ab*bc Yy & abc

abbc ab*bc Yy & abbc

abbbbc ab*bc Yy & abbbbc

abbc ab+bc Yy & abbc

abc ab+bc n - -

abq ab+bc n - -

abbbbc ab+bc Yy & abbbbc

abbc ab?bc Yy & abbc

abc ab?bc Yy & abc

abbbbc ab?bc n - -

abc ab?c Yy & abc

abc ~abc$ y & abc

abcc ~abc$ n - -

abcc ~abce Yy & abc

aabc ~abc$ n - -

aabc abc$ y & abc

abc N Yy &

abc $ y &

abc a.c Yy & abc

Input Text
Text

axc
axyzc
axyzd
abc

alb
aed
abd
adc
a-c
ajc
adc
abc
abcd

a(b
ab
a((b
a\b

abc
abc
aabbabc

Find Patn
(Regular Expr)
F

a.c
a.*c
a.*c
a[bc]d
a[bc]d
a[b-d]e
a[b-d]e
a[b-d]
a[-b]
a[b-]
a[b-a]
a[]b

a[

a]

a[llb
a[™bc]d
a[™bc]d
a[™-b]c
a[™-b]c
a[~]b]c
a[~]b]c
abjcd
abjcd
QOef
O*

*a

$*
(*)b
$b

a\

a\(b
a\(*b
a\(*b
a\\b
abc)
(abc
((a))
(a)b(c)
a+b+c
a**
a*?
(a*)*
(a*)+
(ap~
(a*[b)*
(a+|b)*
(a+[b)+
(a+|b)?

Match

OK?

K<KKKOO0O0000KKKKOOKKKKKODSOO00O00KKKKIIIOIOKSoOKKKOOO0O0KKKKIOK ook

Repl Patn
(Sub String)

R

' R R

Qo 1

' ! R RoRoRe!

' RO RoRo!

' R

||||||QI°Q°Q°Q°|
”~
[y

1
”~
[y

' R0 R0 Ro o

Substitution
Generated

S

axc

axyzc

abd

ace

ac

a_
a_

a]
alb
aed

adc

17

Input Text
Text

abbbcd
abcd

e

ef

abcdefg
xabyabbbz
xayabbbz
abcde

hij

abcde
abcdef
abcd

abc

abc

abcd

abcd

abcd
adcdcde
adcdcde
abc

abcd
alpha

abh

effgz

ij

effg

bcdd
reffgz

a

uh-uh
multiple words, yeah
abcde

(a, b)
ab

Find Patn
(Regular Expr)
F

[/\ab]*
(")
(ab])*
) (

abc

a*

([abc])*d

([abc])*bcd

a|blc|d|e

(alb|c|d|e)f

((a*|b))*

abcd*efg

ab*

ab*

(abjcd)e

[abhgefdc]ij

~(abjcd)e

(abc|)ef

(alb)c*d

(ablab*)bc

a([bc]*)c*
a([bc]*)(c*d)
a([bc]+)(c*d)
a([bc]*)(c+d)
a[bcd]*dcdcde
a[bcd]+dcdcde
(ablja)b*c
((a)(b)c)(d)
[a-zA-Z_][a-zA-Z0-9_]*
~Na(bc+|b[eh])g|.h$
(bc+d$|ef*g.|h?i(j|k))
(bc+d$|ef*g.|h?i(j|k))
(bc+d$|ef*g.|h?i(j|k))
(bc+d$|ef*g.|h?i(j|k))
(bc+d$|ef*g.|h?i(j|k))
(CCCCEEa)d i)
CCCCCECa)dNNN)

multiple words of text
multiple words
(.*)c(.*)

(), (N)

[k1

Match

OK?

SKKKSIKOK 303K KKKK oOKKKKKKKKKKKK oOKKKKKKK OKKKKK OoOK OO0 OXK

Repl Patn
(Sub String)
R

&

1 Qo 1

Q°Q°QI°Q°Q°
s
S

1
”~
[y

1
”~
[y

7
[
<

1
P P s
RPRRRRRR

RoRoRoRoRoRoRoRE RR R R0
/I//
NNN

&-\1

\1-\2-\3-\4

&

&-\1
&-\1-\2
&-\1-\2

&-\1-\2
&
&
&-\1-\2
(\2, \1)

Substitution

Generated

abbbcd-c
abcd-a

e

ef-e

abcdefg

ab

a

cde-cd

hij

Xy

ef-

bcd-b
abc-a
abc-bc
abcd-bc-d
abcd-bc-d
abcd-b-cd
adcdcde
abc-ab
abc-a-b-d
alpha

bh-
effgz-effgz-
ij-ij-j

effgz-effgz-

a

multiple words

abcde-ab-de
(b, a)

18

19
Regexs Engine

Description

The Regexs engine was written by a company named English Knowledge Systems, Inc and was distributed
as part of another archive under the filenames of sr.c and sr.h. | know very little else regarding this
engine except that like Regexp, it is fairly simple in its approach and that it also includes a substitution
feature for generating replacement text for text which has already been matched. In terms of matching, it
does follow the same syntax as that of Regexp but is somewhat less reliable and can give the user an
occasional “hiccup”.

Regexs Replacement Ops

With Regexs, a $ character followed by a single letter is used in the Find pattern to identify those
portions of input text matched by the most recent subexpression in the Find pattern as a unique entity
which may later be referenced by that letter (just as the parentheses are used in Regexp). In the
Replacement pattern, the input text matched by these portions of the Find pattern can then be invoked
using a letter surrounded by the angle bracket characters. For example:

"word reverse"
[a-z]+%a[~a-z]+$b[a-z]+$c"
<c<a>"

"reverse word"

T
E
R
S

The syntax here is identical to the example given for Regexp except that there are no parentheses used.
Grouping with parentheses is not required, although it may be used to assign more than just the most
recent subexpression to the specified letter indentifier (see Regexs version of “Real World Example for
Rename Matching™ that follows several pages below). With Regexs the text put into each save slot is
identified by &a, &b etc rather than by use of parentheses.

In the case shown above substitution, works as follows: The $a is used to specify that the input text
matched by the first subexpression [a-z]+ is placed into save slot a which will contain the string
“word”. The $b is used to specify that the input text matched by the second subexpression ["a-z]+ is
placed into save slot b which will contain the string “ ”. The $c is used to specify that the input text
matched by the third subexpression [a-z]+ is placed into save slot ¢ which will contain the string
“reverse”. The Repl Patn specifies that the input text is to be reassembled as the text matched by the
third subexpression <c> followed by the text matched by the second subexpression followed by the text
matched by the first subexpression <a>. This means that we put it back together as follows:

<a> = “word”
=*" (space character)
<c> = “reverse”

<< + <>+ <a>
“reverse” + o + “word” = “reverse word”.

20
Example of Move Matching - Regexs

With Regexs, this example is identical to the Move Matching example for Regexp. See that example for
full details and description.

Example of Rename Matching - Regexs

See Regexp example for full details and description. With Regexs, the Rename Matching example is very
nearly the same as that for Regexp. We only need to add the $a identifier to the end of the series of
subexpressions grouped by the outer set of parentheses in order to assign the text matched by that group
to save slot a. If you remember from the section on Regexs replacement operations above, we previously
stated that grouping was not required for the Regexs substitution code to work properly, but that
grouping could be used to change the subexpression(s) representing the text to be saved in each of the
letter designated save slots. This is where we use this form of grouping. Without the outer parentheses
shown below, the $a would only save the text matched by the last subexpression (gif|jpg) which would be
either the string “gif” or “jpg” as applicable (try it and see for yourself). By grouping the
subexpressions as shown we are able to assign the text matched by the entire expression excluding the
first subexpression to the save slot as we did in the Regexp example. Again, this is just what we want. In
the Repl Pattern we only need to change the form of the designation to retrieve the text in the save slot to
<a> instead of \1 as used with Regexp. The final pair of expressions which we need are as follows:

F "[a-z]+(paw[0-9]+\. (gif]|ipg))$a”
R "animal<a>"

Regexs Test Cases

The following is a list of test cases used to validate the matcher. These may be used for further examples
to help in learning the various syntactical features of the matcher. | am uncertain as to the meaning of the
third column in these test cases which are somewhat limited in scope as compared to the Regexp tests.
Since both matchers follow the same syntax you can always use the Regexp test cases with the Regexs
engine as long as no substitution is invoked. As mentioned before the primary difference between these
two engines is in the substitution syntax.

Input Text Find Patn ??7
(Regular Expr)

T F
aabada ba ca
aabada bd ca
aabada b\.d ca
aabada [acb].d ca
aabada [Macd].d ca
aabada [a-d].d ca
aabada [-acb].d ca
aabada [N-ac].d ca
aabada [acb-].d ca

aabada <2-4> ca

Input Text

T

aabada
aabada
aabada
aabada
aabada\n
aabaaada
aabda
aabaaada
aabda
aababada
aababada
aababada
aabada
aabada

aada

aada

aabada
aabada
aabada
aabada
aabada
aababababada
aababababada
aababababada
aababababada
aababababada
aababababada
aababababada
aababababada
aabada

word reverse
abbaac

Find Patn

(Regular Expr)

F

<2.4>
<2-~2>
<2>

<~2>

<~2>

ba+

ba+

ba*

ba*

(ba)*
aa(ba)*
(ba)+
aa(ba)*
(ba)+
aa(ba)*
(ba)+
(c|b)

clb

(blc)

b|c
(cle|bld|f)
aa(ba){2,4}
aa(ba){4,2}
aa(ba){4}
aa(ba){2}
aa(ba){2,}
aa(ba){,2}
aa(ba){4,}
aa(ba){,4}
(ba)$c

[a-z]+$a[a-z]+$b[a-z]+SBC
[a-zA-Z]$a<a>

remove double double words

21

??7

ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
ca
c<c>a
<c=<a>
<a>

[a-z]+%a[a-z]+<a> <

22
Match Check Dialog

Presents a dialog which allows the user to experiment with various patterns which are to be input to the
wildcard matcher to see what works prior to using those patterns with other MNT command which use
them. In this way you can be assured of getting the desired results before you go moving all those files to
places unseen. This can be a help because on rare occasions the wildcard matcher may give unpredictable
results depending on the patterns which you feed to it.

Buttons - One, Any, Num, Let, Pun, Wht, Wst, Dec, ExN, ExL - all are described in document on
Pattern Matching

Find Patn, Case Sensitive, Use MetaChars, Wild White, Wild Decimal, Sync Find/Repl, Lit Wild Repl
- all are described in document on Pattern Matching

Match Dialog used to test Find and Replace matching via the Match button

The user enters text to be searched in the “Input Text” box which simulates the filename to be matched
by the various commands. The wildcard pattern to be matched is then entered into the “Find Patn” box. If
a replacement name is to be generated based on the above two items, then the replacement pattern is also
entered into the “Repl Patn” box. Then click the Match button to invoke the pattern matcher. The success
or failure of the match operation and of the replace operation, if any, will be displayed in text below the
“Sub Text” box. If a replace operation is called for and if this operation succeeds, then the replacement
text will be inserted into the “Sub Text” box.

MatchCheck

Match Check Matcher: [USE Wildcard = I
Input Text |dogeari2a [One || Any |
Find Patn |dog*¢t= [Num | [Let |
Repl Patn |“a‘b‘c'd (Pun | [1Wht
5ub Text dogearl?2 EERE ELTIE

[ExN || ExL |

Match DK

[]Case Sensitive [| Sync Find/Repl [Extract [Cancel I
| |Use MetaChars [Lit WildRepl
CJWild White 1 Use RegSub [Match
] Wild Decimal

23
Match Dialog used to test numeric extraction via the Extract button

The Extract function is used only in the List Files command for MPG Patn List and MPG Patn Text formats.
The user enters text to be searched in the “Input Text” box which simulates the filename to be matched
by the various commands. The wildcard pattern to be matched is then entered into the “Find Patn” box.
Included in this pattern should be one of the two extraction tokens (£ or » for numeric or letter
characters respectively - see document on Pattern Matching). The contents of the “Repl Patn” box are
ignored in this case. Then click the Extract button to invoke the pattern matcher. The success or failure of
the match operation and of the extract operation, if any, will be displayed in text below the “Sub Text”
box. If the extract operation succeeds, then the extracted text will be inserted into the “Sub Text” box.

MatchCheck
Match Check Matcher: | Use Wildcard % |
Input Text |dogeari2a [One | [Any |
Find Patn |dog*:z:= [Num | [Let |
Repl Patn |“a‘b\c\d (Pun | [Wht]
Sub Text |12 (st) (Dec)

[ExN || ExL |

Match OK Extract OK

[Case Sensitive [| Sync Find/Repl | Entract [Cancel |
[Use MetaChars []Lit WildRepl

] Wild White [Use RegSub | M™atch

] Wild Decimal

24

Credits and References

Thanks, credits, acknowledgments and references to other useful associated or similar products and
documents are as follows:

Apple Computer Inc. for the wonderful Macintosh itself

The following referenced items are trademarks of Apple Computer Inc.
Apple , Macintosh, MacOS, Mac OS X

MetroWerks Inc. for the Codewarrior Pro Development System used to create MNT
UNIX is a trademark of Unix System Laboratories, Inc.

MS-DOS is a trademark of Microsoft Corp.

All other trademarks are held by their respective owners

Thanks also go to The Walt Disney Company for creating the many fine cartoon characters whose names
served as sample filenames in this documentation.

Portions of definition for the term “expression” come from:
http://www.pcwebopedia.com/

Regex Matchers

Regexp

Copyright (c) 1986 by University of Toronto.

Written by Dr. Henry Spencer @ U of Toronto Zoology

Both code and manual page were written at U of T.

They are intended to be compatible with the Bell V8 regexp(3), but are not derived from Bell code.

Regexs

Copyright 1989 by English Knowledge Systems, Inc. All Rights Reserved.
Original Filenames were SR.C, SR.H which were part of some unknown archive
English Knowledge Systems, 408-438-6922 ???7?

Regular Expression Syntax (try the following links for more info)

http://py-howto.sourceforge.net/regex/regex.html
http://wks.uts.ohio-state.edu/unix_course/intro-73.html
http://sunsite.ualberta.ca/Documentation/Gnu/rx-1.5/html_node/regex_toc.html
http://cclib.nsu.ru/projects/gnudocs/win/gnudocs/regex/regex_toc.html
http://sunland.gsfc.nasa.gov/info/regex/Top.html
http://activedeveloper.dk/iishelp/jscript/htm/jsgrpregexpsyntax.htm
http://webdocs.caspur.it/ibm/web/vacpp-5.0/Ipex/ref/rirgxsyn.htm

Final Comments & Contact info

Phil Rogers
nettools@nym.alias.net Primary email address
macnettools@hotmail.com Alternative email address - mail to this one is less often checked

http://ksinksw.tripod.com/ MacNetTools Web Site and Primary Distribution Source

25

